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Essay Overview 

 Electromagnetism is arguably the most engaging and entertaining field of physics for the 

layman, and it thus has great potential to inspire the general population to learn more about this 

fundamental interaction of the universe. One application of the study of electromagnetism which 

has captivated millions is the “world’s simplest electric train” as showcased in a viral video online 

(AmazingScience, 2014). Although this phenomenon has been modeled previously (Criado & 

Alamo, 2016), there is still a need to deepen our understanding of this amusing demonstration of 

electromagnetic induction. To build on the work of the physics community in providing a 

mathematical model of this interaction, this paper will rederive the model developed by Criado 

and Alamo in a way more accessible to those without prior knowledge of electromagnetism and 

verify the accuracy of the model by solving for the train’s terminal velocity and comparing it to 

empirical data. 

 This essay aims to answer the question, “What is the relationship between various 

physical constants of an electromagnetic ‘train’ and ‘track’ and the terminal velocity of the 

train?”. The “train” refers to the arrangement of spherical magnets, a AA battery, and a washer 

attached to a hanging weight which moves through a left-handed coil of copper wire called the 

“track”, as shown in Picture 1. 

The physical constants mentioned in the 

question refer to the internal radius of the coil, the 

average number of turns per meter of coil, the 

distance between the centers of the magnets, the radii 

of the magnets, the magnitude of the magnetic 

Picture 1: Track, train, and attached weight 
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moments of the magnets, the mass of the train, the voltage of the battery, the coefficient of kinetic 

friction of the system, the total resistance of the circuit, and the mass of the hanging weight. 

 In the explanation of the phenomenon, this paper will apply the concepts of 

electromagnetic induction, eddy currents, and Newton’s laws of motion. 

 When the two magnets of the train contact the coil, current flows through the circuit formed 

by the battery and the coil, generating a magnetic field. This magnetic field interacts with the 

magnets, producing a force acting on the train. As the train moves through the coil, the changing 

flux of either magnet’s magnetic field through the coil generates a current opposing the current 

provided by the battery, decreasing the force acting on the train. Since the change in flux the coil 

is exposed to over a change in time is dependent on the velocity of the train which is in turn 

dependent on the strength of the magnetic field generated by the current in the coil, the velocity of 

the train is self-limiting, and the train will eventually reach a terminal velocity which can be 

calculated given the above physical characteristics of the system. The purpose of the washer and 

attached weight is to make data collection less cumbersome, as explained in the section regarding 

the experimental procedure, and the effect of the washer on the magnetic field generated by the 

trailing magnet will be assumed to be negligible. 

 The first step in the construction of the model will be the calculation of the electromotive 

force caused by the movement of the two magnets through the coil which will later be used to find 

the eddy current generated by the change in magnetic flux. The value of the eddy current will then 

be used in the calculation of the magnetic field produced by the flow of current through the coil 

and how this magnetic field interacts with the magnets of the train. Once the force of friction and 
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the force of the hanging weight have been factored into the calculations, we will be able to isolate 

the velocity of the train to produce the desired equation. 

Definition of Symbols 

Throughout this investigation, all vector quantities will be represented as bolded, 

unitalicized variables. Their magnitudes will be represented as the same symbol with italicization 

but without bolding (e.g. vector 𝐮 would have magnitude 𝑢), and their components will be 

represented by the same symbol as their magnitude with a subscript denoting which component it 

represents (e.g. vector 𝐮 would have components [

𝑢𝑥

𝑢𝑦

𝑢𝑧

]). The symbols to be used throughout this 

investigation are depicted in Diagram 1. The coordinate system used to describe the motion of the 

train will consist of an x-axis running longwise through the coil; a y-axis opposite the pull of 

gravity; and a z-axis perpendicular to the plane formed by the x- and y-axes and pointing leftwards 

from the positive 𝑥-direction, “into” the page. The crossed and dotted circles indicate where the 

current is flowing “into” and “out of” the page, respectively. The distance 𝐿 = 0.0890 m between 

the centers of the dipoles and the average separation between turns 𝑠 =
𝐿

𝑁
= 0.00254 m where 

𝑁 = 35.0 is the average number of turns over distance 𝐿 are also presented in the diagram. 

Magnetic dipoles 𝑑1 and 𝑑2 are located at 𝐎𝑑1
= [

0
0
0
] and 𝐎𝑑2

= [
𝐿
0
0
] respectively; it is assumed 

that the train sits perfectly in the center of the coil. The magnetic moment is a vector quantity with 

a magnitude equal to the torque the dipole experiences in unit magnetic field and in the direction 

pointing from the south pole of the dipole to its north pole (Tatum, 2020). The magnetic moment 
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of dipole 𝑑1 is 𝐦𝑑1
= [

𝑚
0
0

], whereas that of dipole 𝑑2 is 𝐦𝑑2
= [

−𝑚
0
0

], where 𝑚 is the common 

magnitude of each dipole’s magnetic moment. 

 

 

For a spherical magnet of radius 𝑟 and uniform magnetization 𝐌, its internal magnetic field 

is given by 𝐵 =
2

3
𝜇0𝑀 (Griffiths, 2018, p. 276). Rearranging for 𝑀, 

𝑀 =
3𝐵

2𝜇0
. (2.1) 

The external magnetic field of a spherical magnet is a pure dipole with magnetic moment 

𝑚 =
4

3
𝜋𝑟3𝑀 (2.2) 

where 𝑟 is the radius of the dipole (Griffiths, 2018, p. 276). Substituting equation 2.1 into equation 

2.2, 𝑚 =
2𝜋𝑟3

𝜇0
𝐵. For the magnets I used in the experiment, the magnitude of their internal magnetic 

Diagram 1: Train and track configuration 
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fields is 𝐵 = 1.32 T (K&J Magnetics, Inc., 2020). Using a value of 𝑟 = 0.009525 (K&J 

Magnetics, Inc., 2020), each magnet has a magnetic moment with magnitude 𝑚 = 5.70 A m2. 

Calculation of the Electromotive Force 

 Magnetic flux is the term used to describe the amount of magnetic field going through a 

given area (Urone & Hinrichs, 2020). When the magnetic flux present in a conductor changes, 

small loops of current called eddy currents are generated. These eddy currents flow in loops which 

generate magnetic fields with magnetic moments opposite those of the magnetic field which 

caused the change in magnetic flux. In the case of the train and track, the magnetic fields of the 

two dipoles move relative to the coil, creating eddy currents in the coil. Since the current and 

consequently the force generated by this interaction is proportional to the velocity of the magnetic 

field relative to the coil, the velocity of the magnetic field is self-limiting; this implies that the train 

will reach a terminal velocity at which the force on the train due to the magnetic field generated 

by the helical current resulting from the contributions of the battery and the eddy currents will be 

equal to the combined force of friction and the weight opposing its motion (Ling, Sanny, & Moebs, 

2020). 

Since the eddy currents can only be generated in a closed circuit, the only section of coil 

which will be considered in the calculations is that which lies between either dipole. Given the 

voltage 𝑉 of the circuit, the current through the circuit 𝐼, and the internal resistance of the battery 

𝑅𝐼, the current of the circuit is given by 𝐼 =
𝜀−𝑉

𝑅𝐼
, where 𝜀 is the electromotive force (emf) acting 

on the system (Fitzpatrick, Emf and Internal Resistance, 2007). By Ohm’s law, 𝑉 = 𝐼𝑅𝐶 where 𝑅𝐶 

is the resistance of the circuit excluding the battery. Substituting this into the above expression and 

rearranging for 𝐼, 
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𝐼 =
𝜀

𝑅𝑇
, (3.1) 

where 𝑅𝑇 = 𝑅𝐶 + 𝑅𝐼 is the total resistance of the circuit. This equation can be used to find the 

eddy current 𝐼𝐸 relevant to the problem. Applying Lenz’s Law, 

𝜀 = −
𝑑𝜙

𝑑𝑡
(3.2) 

(Griffiths, 2018, p. 318) where 𝜙 is the magnetic flux of the combined magnetic field of dipole 𝑑1 

and 𝑑2 through the helicoid 𝐻. The helicoid is defined by 

𝐪 = [

𝑥
−𝜌 cos(𝑘𝑥)

−𝜌 sin(𝑘𝑥)
]  

for the horizontal position 0 ≤ 𝑥 ≤ 𝐿 and the radius of the helicoid 0 ≤ 𝜌 ≤ 𝑅, where 

𝑘 =
2𝜋

𝑠
=

2𝜋𝑁

𝐿
(3.3) 

translates into one turn being completed for every change in 𝑥 equivalent to the average separation 

between turns, with 𝑠 =
𝐿

𝑁
 being the average separation between turns where 𝑁 is the average turns 

within the length 𝐿. When 𝑥 = 0, 𝐪 = [
0

−𝜌
0

], indicating the bottom of the helix. As 𝑥 increases, 

the 𝑦- and 𝑧-components trace a spiral clockwise when viewed from the positive 𝑥-direction, 

forming the desired shape, as depicted in Figure 1. 
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The magnetic flux of the combined field 𝐁 produced by dipoles 𝑑1 and 𝑑2 through the 

helicoid is given by 

𝜙 = ∫ 𝐁 ∙ 𝑑𝐀
𝐻

 (3.5) 

where 𝑑𝐀 is the infinitesimal area of the helicoid over which the magnetic flux is calculated, as 

given by 

𝑑𝐀 = (
𝜕𝐪

𝜕𝑥
×

𝜕𝐪

𝜕𝜌
) 𝑑𝑥𝑑𝜌 

(Purcell & Morin, 2013, p. 350) where 
𝜕𝐪

𝜕𝑥
=

𝜕

𝜕𝑥
[

𝑥
−𝜌 cos(𝑘𝑥)

−𝜌 sin(𝑘𝑥)
] = [

1
𝑘𝜌 sin(𝑘𝑥)

−𝑘𝜌 cos(𝑘𝑥)
] and 

𝜕𝐪

𝜕𝜌
=

𝜕

𝜕𝜌
[

𝑥
−𝜌 cos(𝑘𝑥)

−𝜌 sin(𝑘𝑥)
] = [

0
− cos(𝑘𝑥)

− sin(𝑘𝑥)
], giving 

Figure 1: Helicoid over which the flux is calculated 
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𝑑𝐀 = ([

1
𝑘𝜌 sin(𝑘𝑥)

−𝑘𝜌 cos(𝑘𝑥)
] × [

0
− cos(𝑘𝑥)

− sin(𝑘𝑥)
])𝑑𝑥𝑑𝜌 = [

−𝑘𝜌 sin2(𝑘𝑥) − 𝑘𝜌 cos2(𝑘𝑥)

sin(𝑘𝑥)

− cos(𝑘𝑥)
]

= [
−𝑘𝜌(sin2(𝑘𝑥) + cos2(𝑘𝑥))

sin(𝑘𝑥)

− cos(𝑘𝑥)
]. 

Recognizing the Pythagorean identity in 𝑑𝐴𝑥, this expression can be further reduced to 

𝑑𝐀 = [

−𝑘𝜌

sin(𝑘𝑥)

− cos(𝑘𝑥)
] 𝑑𝜌𝑑𝑥. (3.6) 

The magnetic field of a dipole of moment 𝐦 at a point 𝐛 relative to the position of the dipole is 

given by 

𝐁(𝐦,𝐛) =
𝜇0

4𝜋𝑏3
[3(𝐦 ∙ 𝐛̂)𝐛̂ − 𝐦] (3.7) 

where 

𝐛̂ =
𝐛

𝑏
(3.8) 

(Griffiths, 2018, p. 255). Since the 𝑥-component 𝐵𝑥 of the combined field 𝐁 is the only dimension 

aligned with the coil, it will be the only contributor to the eddy currents, and we can ignore the 

other dimensions of 𝐁. 𝐵𝑥 is given by 

𝐵𝑥(𝐦, 𝐛) =
𝜇0

4𝜋𝑏3
[3(𝐦 ∙ 𝐛̂)𝐛̂ − 𝐦]

𝑥
. (3.9) 

In the context of the problem, 𝐛 will follow the form 
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𝐪 = [

𝑥
−𝜌 cos(𝑘𝑥)

−𝜌 sin(𝑘𝑥)
] 

in accordance with equation 3.4. As a result, 𝐵𝑥 can be rewritten as 

𝐵𝑥(𝐦, 𝑥, 𝜌) =
𝜇0

4𝜋𝑞3
[3(𝐦 ∙ 𝐪̂)𝐪̂ − 𝐦]𝑥 (3.10) 

Because dipole 𝑑2 is offset from dipole 𝑑1 by 𝐿 across the 𝑥-axis, a point located at 𝐪 relative to 

dipole 𝑑1 will be located at 𝐪 − [
𝐿
0
0
] relative to dipole 𝑑2. Using equation 3.10, the combined 𝑥-

component of the field 𝐁 of the fields of dipoles 𝑑1 and 𝑑2 can be found with 

𝐵𝑥(𝑥, 𝜌) = 𝐵𝑥(𝐦𝑑1
, 𝑥, 𝜌) + 𝐵𝑥(𝐦𝑑2

, 𝑥 − 𝐿, 𝜌). (3.11) 

Substituting this equation into equation 3.5, 

𝜙 = ∫ 𝐵𝑥(𝑥, 𝜌) ∙ 𝑑𝐴𝑥
𝐻

. 

Expanding the integral to cover the helicoid defined by equation 3.3 and substituting in the value 

of 𝑑𝐴𝑥 given by equation 3.6, 

𝜙 = ∫ ∫ 𝐵𝑥(𝑥, 𝜌) ∙ −𝑘𝜌
𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥 

= −𝑘 ∫ ∫ 𝐵𝑥(𝑥, 𝜌)𝜌
𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥. 

Substituting this equation into equation 3.2, 
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𝜀 =
𝑑

𝑑𝑡
[𝑘 ∫ ∫ 𝐵𝑥(𝑥, 𝜌)𝜌

𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥] 

= 𝑘 ∫ ∫
𝑑

𝑑𝑡
(𝐵𝑥(𝑥, 𝜌))𝜌

𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥. (3.12) 

As the train moves in the positive 𝑥-direction relative to the coil, the coil moves in the 

negative x-direction relative to the train at the same speed. Thus, the horizontal position of a point 

on the helicoid relative to dipole 𝑑1 is given by 

𝑥(𝑡) = 𝑥 − 𝑣𝑡 (3.13) 

where 𝑥 is the initial 𝑥-position of the point relative to dipole 𝑑1. When the train is positioned such 

that dipole 𝑑1 is centered at 𝑥 = 0 at time 𝑡 = 0 and the train moves at a constant velocity 𝑣 in the 

𝑥-direction, we can substitute equation 3.13 in place of 𝑥 in equation 3.12, yielding 

𝜀 = 𝑘 ∫ ∫
𝑑

𝑑𝑡
(𝐵𝑥(𝑥(𝑡), 𝜌))𝜌

𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥. 

Using the chain rule, this becomes 

𝜀 = 𝑘 ∫ ∫
𝑑𝐵𝑥(𝑥, 𝜌)

𝑑𝑥
∙
𝑑𝑥(𝑡)

𝑑𝑡
𝜌

𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥. (3.14) 

From the definition of 𝑥(𝑡) = 𝑥 − 𝑣𝑡 given by equation 3.13, it is clear that 

𝑑𝑥(𝑡)

𝑑𝑡
= −𝑣. 

Substituting this into equation 3.12, 
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𝜀 = −𝑣𝑘 ∫ ∫
𝑑𝐵𝑥(𝑥, 𝜌)

𝑑𝑥
𝜌

𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥. (3.15) 

Expanding 𝐵𝑥(𝑥) with its definition in equation 3.11, 

𝐵𝑥(𝑥, 𝜌) = 𝐵𝑥(𝐦𝑑1
, 𝑥, 𝜌) + 𝐵𝑥(𝐦𝑑2

, 𝑥 − 𝐿, 𝜌). (3.16) 

To begin expanding these expressions, we must derive 𝐪̂ given equations 3.8 and 3.4. Since each 

dipole is aligned with the center of the helicoid in the 𝑦- and 𝑧-directions, the vector 𝐪 from the 

center of a dipole to a point on the helicoid defined by equation 3.4 has a magnitude 𝑞 = √𝑥2 + 𝜌2 

when 𝑞𝑥 = 𝑥, as clarified by Diagram 2. 

 

 

Subsequently, when 𝐪 is given by equation 3.8, 

𝐪̂ =
𝐪

𝑞
=

[
 
 
 
 
 
 

𝑥

𝑞

−𝜌 cos(𝑘𝑥)

𝑞

−𝜌 sin(𝑘𝑥)

𝑞
 
]
 
 
 
 
 
 

, (3.17) 

Diagram 2: Clarification of geometry 
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where 

𝑞 = √𝑥2 + 𝜌2. (3.18) 

Since 𝐦𝑑1
= [

𝑚
0
0

] and 𝐦𝑑2
= [

−𝑚
0
0

], equation 3.10 can be simplified in the context of this problem 

to only require the magnitude of the magnetic moment of the dipole rather than the moment 

expressed as a vector along with the location of the point in the 𝑥-direction. Given a magnitude 𝛾 

and using the definition of 𝐪̂ provided by equation 3.17, equation 3.10 becomes 

𝐵𝑥 (𝛾, 𝑥, 𝜌) =
𝜇0

4𝜋𝑞3

[
 
 
 
 
 
 

3

(

 
 
 
 

[
𝛾
0
0
] ∙

[
 
 
 
 
 
 

𝑥

𝑞

−𝜌 cos(𝑘𝑥)

𝑞

−𝜌 sin(𝑘𝑥)

𝑞
 
]
 
 
 
 
 
 

)

 
 
 
 

[
 
 
 
 
 
 

𝑥

𝑞

−𝜌 cos(𝑘𝑥)

𝑞

−𝜌 sin(𝑘𝑥)

𝑞
 
]
 
 
 
 
 
 

− [
𝛾
0
0
]

]
 
 
 
 
 
 

𝑥

 

=
𝜇0

4𝜋𝑞3

[
 
 
 
 
 
 

3𝛾𝑥

𝑞

[
 
 
 
 
 
 

𝑥

𝑞

−𝜌 cos(𝑘𝑥)

𝑞

−𝜌 sin(𝑘𝑥)

𝑞
 
]
 
 
 
 
 
 

− [
𝛾
0
0
]

]
 
 
 
 
 
 

𝑥

 

=
𝜇0

4𝜋𝑞3

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 

3𝛾𝑥2

𝑞2

−3𝛾𝑥𝜌 cos(𝑘𝑥)

𝑞2

−3𝛾𝑥𝜌 sin(𝑘𝑥)

𝑞2 ]
 
 
 
 
 
 

− [
𝛾
0
0
]

]
 
 
 
 
 
 
 

𝑥
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=
𝜇0

4𝜋

[
 
 
 
 
 

3𝛾𝑥2 − 𝛾𝑞2

𝑞2

−3𝛾𝑥𝜌 cos(𝑘𝑥)
𝑞2

−3𝛾𝑥𝜌 sin(𝑘𝑥)
𝑞2 ]

 
 
 
 
 

𝑥

𝑞3
 

=
𝜇0

4𝜋

3𝛾𝑥2 − 𝛾𝑞2

𝑞5
 

=
𝜇0𝛾

4𝜋

3𝑥2 − 𝑞2

𝑞5
.  

Substituting in equation 3.18 for 𝑞, this becomes 

𝐵𝑥 (𝛾, 𝑥, 𝜌) =
𝜇0𝛾

4𝜋

3𝑥2 − (𝑥2 + 𝜌2)

(𝑥2 + 𝜌2)
5
2

 

=
𝜇0𝛾

4𝜋

2𝑥2 − 𝜌2

(𝑥2 + 𝜌2)
5
2

. (3.19) 

Using this generalized formula, the total field in the 𝑥-direction is given by 

𝐵𝑥(𝑥, 𝜌) = 𝐵𝑥(𝑚, 𝑥, 𝜌) + 𝐵𝑥(−𝑚, 𝑥 − 𝐿, 𝜌). (3.20) 

By the sum rule, 

𝑑𝐵𝑥(𝑥, 𝜌)

𝑑𝑥
=

𝑑𝐵𝑥(𝑚, 𝑥, 𝜌)

𝑑𝑥
+

𝑑𝐵𝑥(−𝑚, 𝑥 − 𝐿, 𝜌)

𝑑𝑥
(3.21) 
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To calculate 𝜀, we must first calculate 
𝑑𝐵𝑥(𝑥,𝜌)

𝑑𝑥
. This can be done by calculating 

𝑑𝐵𝑥(𝛾,𝑥,𝜌)

𝑑𝑥
 and 

applying the result to both terms of equation 3.21. Finding the derivative of equation 3.19, 

𝑑𝐵𝑥(𝛾, 𝑥, 𝜌)

𝑑𝑥
=

𝑑

𝑑𝑥
[
𝜇0𝛾

4𝜋

2𝑥2 − 𝜌2

(𝑥2 + 𝜌2)
5
2

] 

=
𝜇0𝛾

4𝜋
∙

𝑑

𝑑𝑥
[

2𝑥2 − 𝜌2

(𝑥2 + 𝜌2)
5
2

] (3.22) 

The chain rule states that, given a function 𝑓(𝑥) = 𝑔(ℎ(𝑥)), 

𝑓′(𝑥) = 𝑔′(ℎ(𝑥)) ∙ ℎ′(𝑥). 

In equation 3.22, 𝑓(𝑥) = (𝑥2 + 𝜌2)
5

2, 𝑔(𝑥) = 𝑥
5

2, and ℎ(𝑥) = 𝑥2 + 𝜌2. Applying the power rule 

to 𝑔(𝑥) yields 𝑔′(𝑥) =
5

2
𝑥

3

2. Doing the same for ℎ(𝑥), ℎ′(𝑥) = 2𝑥. In all, 

𝑓′(𝑥) =
5

2
(𝑥2 + 𝜌2)

3
2 ∙ 2𝑥 = 5𝑥(𝑥2 + 𝜌2)

3
2. (3.23) 

Moving on to the fraction as a whole, the quotient rule states, given a function 𝑞(𝑥) =
𝑟(𝑥)

𝑠(𝑥)
, 

𝑞′(𝑥) =
𝑟′(𝑥)𝑠(𝑥) − 𝑟(𝑥)𝑠′(𝑥)

(𝑠(𝑥))
2 . 
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In this situation, 𝑞(𝑥) =
2𝑥2−𝜌2

[𝑥2+𝜌2]
5
2

, 𝑟(𝑥) = 2𝑥2 − 𝜌2, and 𝑠(𝑥) = 𝑓(𝑥) = [𝑥2 + 𝜌2]
5

2. Applying 

the power rule to 𝑟(𝑥) yields 𝑟′(𝑥) = 4𝑥. Using the definition of 𝑓′(𝑥) given by equation 3.23 in 

the equation for 𝑞′(𝑥), 

𝑞′(𝑥) =
4𝑥 ∙ [𝑥2 + 𝜌2]

5
2 − (2𝑥2 − 𝜌2) ∙ 5𝑥 (𝑥2 + 𝜌2)

3
2

([𝑥2 + 𝜌2]
5
2)

2 . 

Factoring out 𝑥(𝑥2 + 𝜌2)
3

2 from the numerator and simplifying, 

𝑞′(𝑥) =
𝑥(𝑥2 + 𝜌2)

3
2[4(𝑥2 + 𝜌2) − (2𝑥2 − 𝜌2) ∙ 5]

(𝑥2 + 𝜌2)5
 

=
𝑥[4(𝑥2 + 𝜌2) − 5(2𝑥2 − 𝜌2)]

(𝑥2 + 𝜌2)
7
2

 

=
𝑥[4𝑥2 + 4𝜌2 − 10𝑥2 + 5𝜌2]

(𝑥2 + 𝜌2)
7
2

 

=
𝑥[9𝜌2 − 6𝑥2]

(𝑥2 + 𝜌2)
7
2

 

=
3𝑥[3𝜌2 − 2𝑥2]

(𝑥2 + 𝜌2)
7
2

. (3.24) 

Using this result in equation 3.22, 
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𝑑𝐵𝑥(𝛾, 𝑥, 𝜌)

𝑑𝑥
=

𝜇0𝛾

4𝜋
∙
3𝑥[3𝜌2 − 2𝑥2]

(𝑥2 + 𝜌2)
7
2

. (3.25) 

Substituting equation 3.21 into equation 3.15, 

𝜀 = −𝑣𝑘 ∫ ∫ (
𝑑𝐵𝑥(𝑚, 𝑥, 𝜌)

𝑑𝑥
+

𝑑𝐵𝑥(−𝑚, 𝑥 − 𝐿, 𝜌)

𝑑𝑥
)𝜌

𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥 (3.26) 

Using the sum rule, this equation can be split into two parts such that 

𝜀 = −𝑣𝑘 ∙ (𝜀𝐶(𝑚, 𝑥) + 𝜀𝐶(−𝑚, 𝑥 − 𝐿)) (3.27) 

where 

𝜀𝐶(𝛾, 𝑥) = ∫ ∫
𝑑𝐵𝑥(𝛾, 𝑥, 𝜌)

𝑑𝑥
𝜌

𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥 (3.28) 

Substituting the definition of 
𝑑𝐵𝑥(𝛾,𝑥,𝜌)

𝑑𝑥
 given by equation 3.25 into equation 3.28, 

𝜀𝐶(𝛾, 𝑥) = ∫ ∫
𝜇0𝛾

4𝜋
∙
3𝑥[3𝜌2 − 2𝑥2]

(𝑥2 + 𝜌2)
7
2

𝜌
𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥 

=
𝜇0𝛾

4𝜋
∫ ∫

3𝑥[3𝜌2 − 2𝑥2]

(𝑥2 + 𝜌2)
7
2

𝜌
𝑅

0

𝑑𝜌
𝐿

0

𝑑𝑥. (3.29) 

Solving the inner integral of equation 3.29 given by 

∫
3𝑥[3𝜌2 − 2𝑥2]

(𝑥2 + 𝜌2)
7
2

𝜌
𝑅

0

𝑑𝜌, 
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we can bring 3𝑥 in front of the integral to yield 

3𝑥 ∫
𝜌[3𝜌2 − 2𝑥2]

(𝑥2 + 𝜌2)
7
2

𝑑𝜌
𝑅

0

. (3.30) 

We can use 𝑢 substitution with a value 𝑢 = 𝑥2 + 𝜌2 to begin solving the integral. This gives 

𝑑𝑢

𝑑𝜌
=

𝑑

𝑑𝜌
(𝑥2 + 𝜌2) = 2𝜌, 

leading to 

𝑑𝜌 =
𝑑𝑢

2𝜌
. (3.31) 

To substitute 𝑢 into the numerator without any residual 𝜌, it can be seen that 

3(𝑥2 + 𝜌2) − 5𝑥2 = 3𝜌2 − 2𝑥2. 

This gives a resultant expression 

3𝑢 − 5𝑥2 (3.32) 

which can be substituted into the numerator. Substituting equations 3.31 and 3.32 into equation 

3.30 yields 

3

2
𝑥 ∫

3𝑢 − 5𝑥2

𝑢
7
2

𝑑𝑢
𝑥2+𝑅2

𝑥2+02

. (3.33) 

Applying the sum rule and simplifying, this becomes 
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3

2
𝑥 (∫

3𝑢

𝑢
7
2

𝑑𝑢 − ∫
5𝑥2

𝑢
7
2

𝑑𝑢)|

𝑥2

𝑥2+𝑅2

 

=
3

2
𝑥 (3∫

1

𝑢
5
2

𝑑𝑢 − 5𝑥2 ∫
1

𝑢
7
2

𝑑𝑢)|

𝑥2

𝑥2+𝑅2

. (3.34) 

Applying the power rule to the first term gives 

3∫
1

𝑢
5
2

𝑑𝑢 = 3 (−
2

3𝑢
3
2

) = −
2

𝑢
3
2

. (3.35) 

Applying the power rule to the second term gives 

−5𝑥2 ∫
1

𝑢
7
2

𝑑𝑢 = −5𝑥2 (−
2

5𝑢
5
2

) =
2𝑥2

𝑢
5
2

. (3.36) 

Substituting equations 3.35 and 3.36 into equation 3.34 and simplifying, 

3

2
𝑥 (−

2

𝑢
3
2

+
2𝑥2

𝑢
5
2

)|

𝑥2

𝑥2+𝑅2

 

=
3

2
𝑥 (

−2𝑢 + 2𝑥2

𝑢
5
2

)|

𝑥2

𝑥2+𝑅2

 

=
3

2
𝑥 (

−2(𝑥2 + 𝑅2) + 2𝑥2

(𝑥2 + 𝑅2)
5
2

−
−2𝑥2 + 2𝑥2

(𝑥2)
5
2

) 
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= −
3𝑅2𝑥

(𝑥2 + 𝑅2)
5
2

. (3.37) 

Substituting this value back into equation 3.29, 

𝜀𝐶(𝛾, 𝑥) =
𝜇0𝛾

4𝜋
∫ (−

3𝑅2𝑥

(𝑥2 + 𝑅2)
5
2

)
𝐿

0

𝑑𝑥. 

Bringing −3𝑅2 in front of the integral, this becomes 

𝜀𝐶(𝛾, 𝑥) = −3𝑅2
𝜇0𝛾

4𝜋
∫

𝑥

(𝑥2 + 𝑅2)
5
2

𝐿

0

𝑑𝑥. (3.38) 

We can use 𝑢 substitution with a value 𝑢 = 𝑥2 + 𝑅2 to begin simplifying equation 3.38, giving 

𝑑𝑢

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑥2 + 𝑅2) = 2𝑥, (3.39) 

leading to 

𝑑𝑥 =
𝑑𝑢

2𝑥
. (3.40) 

Substituting equations 3.39 and 3.40 into equation 3.38 and simplifying yields 

𝜀𝐶(𝛾, 𝑥) = −3𝑅2
𝜇0𝛾

4𝜋
∫

𝑥

𝑢
5
2

𝑑𝑢

2𝑥
 

𝐿2+𝑅2

𝑅2

= −
3𝑅2

2
∙
𝜇0𝛾

4𝜋
∫

1

𝑢
5
2

𝑑𝑢
𝐿2+𝑅2

𝑅2

.

 

Applying the power rule, this becomes 
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𝜀𝐶(𝛾, 𝑥) = −
3𝑅2

2
∙
𝜇0𝛾

4𝜋
(−

2

3𝑢
3
2

)|

𝑅2

𝐿2+𝑅2

. (3.41) 

Substituting 𝑢 back into equation 3.41 yields 

𝜀𝐶(𝛾, 𝑥) = −
3𝑅2

2
∙
𝜇0𝛾

4𝜋
(−

2

3(𝑥2 + 𝑅2)
3
2

)|

0

𝐿

. (3.42) 

This is the general form of 𝜀𝑐(𝛾, 𝑥) which can be used to find both terms of equation 3.27. 

𝜀𝐶(𝑚, 𝑥) becomes 

𝜀𝑐(𝑚, 𝑥) = −
3𝑅2

2
∙
𝜇0𝑚

4𝜋
(−

2

3(𝑥2 + 𝑅2)
3
2

)|

0

𝐿

 

= −
3𝑅2

2
∙
𝜇0𝑚

4𝜋
(−

2

3(𝐿2 + 𝑅2)
3
2

+
2

3(𝑅2)
3
2

) 

=
𝜇0𝑚

4𝜋
(

𝑅2

(𝐿2 + 𝑅2)
3
2

−
1

𝑅
) (3.43) 

while 𝜀𝐶(−𝑚, 𝑥 − 𝐿) becomes 

𝜀𝑐(−𝑚, 𝑥 − 𝐿) =
3𝑅2

2
∙
𝜇0𝑚

4𝜋
(−

2

3((𝑥 − 𝐿)2 + 𝑅2)
3
2

)|

0

𝐿

 

=
3𝑅2

2
∙
𝜇0𝑚

4𝜋
(−

2

3(𝑅2)
3
2

+
2

3(𝐿2 + 𝑅2)
3
2

) 
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=
𝜇0𝑚

4𝜋
(

𝑅2

(𝐿2 + 𝑅2)
3
2

−
1

𝑅
) . (3.44) 

Substituting equations 3.43 and 3.44 into equation 3.27, 

𝜀 = −𝑣𝑘 ∙
𝜇0𝑚

2𝜋
(

𝑅2

(𝐿2 + 𝑅2)
3
2

−
1

𝑅
). 

Substituting in the definition of 𝑘 given by equation 3.3, this becomes 

𝜀 = −𝑣 ∙
𝜇0𝑚𝑁

𝐿
(

𝑅2

(𝐿2 + 𝑅2)
3
2

−
1

𝑅
) . (3.45) 

This equation will be used later to find the eddy current resulting from the movement of the train. 

Calculation of Net Magnetic Field 

 The force experienced by the train which drives it forward in the coil is caused by the 

magnets’ exposure to the magnetic field generated by the current flowing through the coil. We can 

use the Biot-Savart law to find the magnetic field at any point 𝐩 = [
𝑥
𝑦
𝑧
] generated by the current 

flowing through the coil between the two magnets. The Biot-Savart law states 

𝐁(𝐩) =
𝜇0𝐼

4𝜋
∫

𝑑𝐩′ × (𝐩 − 𝐩′)

|𝐩 − 𝐩′|3
𝑑𝑥′ (4.1) 

(Fitzpatrick, The Biot-Savart law, 2006), where 𝐩′ is a point representing the position of the 

infinitesimal section of coil used in the integration over the helix and 

𝐼 = 𝐼𝐵 + 𝐼𝐸 (4.2) 
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defines the net current through the coil, where 𝐼𝐵 represents the current provided by the battery 

and 𝐼𝐸 is the eddy current generated by the movement of the train through the coil. This operation 

can be conceptualized as summing the contributions of every infinitesimal section of wire along 

the coil to the magnetic field at the point 𝐩. The coil can be modeled as a helix where the 

infinitesimal section 𝐩′ of the helix can be found with 

𝐩′ = [
𝑥′

−𝑅cos(𝑘𝑥′)

−𝑅sin(𝑘𝑥′)
] , (4.3) 

where 𝑅 is the radius of the coil and 𝑘 =
2𝜋

𝑠
=

2𝜋𝑁

𝐿
, as before. Within this calculation, 0 ≤ 𝑥′ ≤ 𝐿 

since the integration is being calculated over the part of the helix through which current is flowing. 

In this expression, 𝑑𝐩′ is the derivative of 𝐩′ with respect to 𝑥′, which can be calculated as 

𝑑

𝑑𝑥′
𝐩′ =

d

𝑑𝑥′
[

𝑥′

−𝑅cos(𝑘𝑥′)

−𝑅sin(𝑘𝑥′)
] = [

1
𝑘𝑅sin(𝑘𝑥′)

−𝑘𝑅cos(𝑘𝑥′)
] . (4.4) 

We will be using this equation in the context of finding the magnetic field by the helical current 

present at the center of each dipole. Since the dipoles are located at 𝐎𝑑1
= [

0
0
0
] and 𝐎𝑑2

= [
𝐿
0
0
], we 

know that 𝑝𝑦 and 𝑝𝑧 will always be zero; thus, we can define 𝐩 as 

𝐩 = [
𝑥
0
0
] . (4.5) 

Equation 4.1 can be bounded and 𝐩, 𝐩′, and 𝑑𝐩′ replaced with their component forms from 

equations 4.4 − 4.6 to give 
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𝐁(𝑥) =
𝜇0𝐼

4𝜋
∫

[
1

𝑘𝑅sin(𝑘𝑥′)

−𝑘𝑅cos(𝑘𝑥′)
] × ([

𝑥
0
0
] − [

𝑥′

−𝑅cos(𝑘𝑥′)

−𝑅sin(𝑘𝑥′)
])

|[
𝑥
0
0
] − [

𝑥′

−𝑅cos(𝑘𝑥′)

−𝑅sin(𝑘𝑥′)
]|

3

𝐿

0

𝑑𝑥′. (4.6) 

Beginning with the simplification of the numerator, 

[
1

𝑘𝑅sin(𝑘𝑥′)

−𝑘𝑅cos(𝑘𝑥′)
] × ([

𝑥
0
0
] − [

𝑥′

−𝑅cos(𝑘𝑥′)

−𝑅sin(𝑘𝑥′)
])  

= [
1

𝑘𝑅sin(𝑘𝑥′)

−𝑘𝑅cos(𝑘𝑥′)
] × [

𝑥 − 𝑥′

𝑅cos(𝑘𝑥′)

𝑅sin(𝑘𝑥′)
] 

= [
𝑘𝑅2 sin2(𝑘𝑥′) + 𝑘𝑅2 cos2(𝑘𝑥′)

−𝑘𝑅cos(𝑘𝑥′)(𝑥 − 𝑥′) − 𝑅sin(𝑘𝑥′)

𝑅cos(𝑘𝑥′) − 𝑘𝑅sin(𝑘𝑥′)(𝑥 − 𝑥′)
]. 

We will find later that the only component of 𝐁 relevant to the problem is 𝐵𝑥. Continuing with the 

𝑥-component only, 

𝑘𝑅2(sin2(𝑘𝑥′) + cos2(𝑘𝑥′)). 

Using the Pythagorean identity, this can be further reduced to 

𝑘𝑅2. (4.7) 

Moving on to the simplification of the denominator, 
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|[
𝑥
0
0
] − [

𝑥′

−𝑅cos(𝑘𝑥′)

−𝑅sin(𝑘𝑥′)
]|

3

= |[
𝑥 − 𝑥′

𝑅cos(𝑘𝑥′)

𝑅sin(𝑘𝑥′)
]|

3

. 

We can use the distance formula to calculate the magnitude of the vector: 

√(𝑥 − 𝑥′)2 + 𝑅2 cos2(𝑘𝑥′) + 𝑅2 sin2(𝑘𝑥′)
3

 

= [(𝑥 − 𝑥′)2 + 𝑅2 cos2(𝑘𝑥′) + 𝑅2 sin2(𝑘𝑥′)]
3
2 

= [(𝑥 − 𝑥′)2 + 𝑅2(cos2(𝑘𝑥′) + sin2(𝑘𝑥′))]
3
2. 

Again leveraging the Pythagorean identity, this becomes 

[(𝑥 − 𝑥′)2 + 𝑅2]
3
2. (4.8) 

Substituting equations 4.7 and 4.8 into equation 4.3, 

𝐵𝑥(𝑥) =
𝜇0𝐼

4𝜋
∫

𝑘𝑅2

[(𝑥 − 𝑥′)2 + 𝑅2]
3
2

𝐿

0

𝑑𝑥′.  

𝑘𝑅2 can be brought in front of the integral to yield 

𝐵𝑥(𝑥) = 𝑘𝑅2
𝜇0𝐼

4𝜋
∫

1

[(𝑥 − 𝑥′)2 + 𝑅2]
3
2

𝐿

0

𝑑𝑥′. (4.9) 

We can begin solving this integral with 𝑢-substitution. Given a value 𝑢 = 𝑥′ − 𝑥, then 

𝑑𝑢

𝑑𝑥′
=

𝑑

𝑑𝑥′
[𝑥′ − 𝑥] = 1. 
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Substituting these values into equation 4.9, 

𝐵𝑥(𝑥) = 𝑘𝑅2
𝜇0𝐼

4𝜋
∫

1

[𝑢2 + 𝑅2]
3
2

𝐿−𝑥

−𝑥

𝑑𝑢. 

We can further substitute 𝑣 = arctan (
𝑢

𝑅
) to obtain 𝑑𝑢 = 𝑅 sec2(𝑣) 𝑑𝑣, yielding 

𝐵𝑥(𝑥) = 𝑘𝑅2
𝜇0𝐼

4𝜋
∫

𝑅 sec2(𝑣)

[𝑅2 tan2(𝑣) + 𝑅2]
3
2

arctan(
𝐿−𝑥
𝑅

)

arctan(
−𝑥
𝑅

)

𝑑𝑣. 

= 𝑘𝑅2
𝜇0𝐼

4𝜋
∫

𝑅 sec2(𝑣)

[𝑅2(tan2(𝑣) + 1)]
3
2

arctan(
𝐿−𝑥
𝑅

)

arctan(
−𝑥
𝑅

)

𝑑𝑣. 

Recognizing another Pythagorean identity, this becomes 

𝐵𝑥(𝑥) = 𝑘𝑅2
𝜇0𝐼

4𝜋
∫

𝑅 sec2(𝑣)

[𝑅2 sec2(𝑣)]
3
2

arctan(
𝐿−𝑥
𝑅

)

arctan(
−𝑥
𝑅

)

𝑑𝑣 

= 𝑘𝑅2
𝜇0𝐼

4𝜋
∫

1

𝑅2 sec(𝑣)

arctan(
𝐿−𝑥
𝑅

)

arctan(
−𝑥
𝑅

)

𝑑𝑣 

= 𝑘
𝜇0𝐼

4𝜋
∫ cos(𝑣)

arctan(
𝐿−𝑥
𝑅

)

arctan(
−𝑥
𝑅

)

𝑑𝑣 

= 𝑘
𝜇0𝐼

4𝜋
(sin(𝑣))|

arctan(
−𝑥
𝑅

)

arctan(
𝐿−𝑥
𝑅

)
. 

Substituting the above definition of 𝑣, 
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𝐵𝑥(𝑥) = 𝑘
𝜇0𝐼

4𝜋
(sin (arctan (

𝑢

𝑅
)))|

−𝑥

𝐿−𝑥

. 

Substituting the above definition of 𝑢, 

𝐵𝑥(𝑥) = 𝑘
𝜇0𝐼

4𝜋
(sin (arctan (

𝑥′ − 𝑥

𝑅
)))|

0

𝐿

 

= 𝑘
𝜇0𝐼

4𝜋
∙ (sin (arctan (

𝐿 − 𝑥

𝑅
)) − sin (arctan (

−𝑥

𝑅
))). 

Using the identity 

sin(arctan(𝑥)) =
𝑥

√1 + 𝑥2
, 

𝐵𝑥(𝑥) = 𝑘
𝜇0𝐼

4𝜋
∙

(

 

𝐿 − 𝑥
𝑅

√1 + (
𝐿 − 𝑥

𝑅 )
2

−

−𝑥
𝑅

√1 + (
−𝑥
𝑅 )

2

)

  

= 𝑘
𝜇0𝐼

4𝜋
∙

(

 
𝐿 − 𝑥

𝑅√1 +
(𝐿 − 𝑥)2

𝑅2

+
𝑥

𝑅√1 +
𝑥2

𝑅2)

  

= 𝑘
𝜇0𝐼

4𝜋
∙

(

 
𝐿 − 𝑥

𝑅√𝑅2 + (𝐿 − 𝑥)2

𝑅2

+
𝑥

𝑅√𝑅2 + 𝑥2

𝑅2 )

  

= 𝑘
𝜇0𝐼

4𝜋
∙ (

𝐿 − 𝑥

√𝑅2 + (𝐿 − 𝑥)2
+

𝑥

√𝑅2 + 𝑥2
) . (4.10) 
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Calculation of Theoretical Terminal Velocity 

The terminal velocity of the train is reached when the net force on the train is zero. This is 

when the force on the train generated by the magnetic field resulting from the current through the 

coil is equal to the combined force of friction and the weight of the hanging weight opposing the 

motion of the train, as expressed by 

𝐹𝑥𝑡𝑜𝑡𝑎𝑙
− 𝑀𝑇𝑔𝜇𝑘 − 𝑀𝑊𝑔 = 0, (5.1) 

where 𝐹𝑥𝑡𝑜𝑡𝑎𝑙
 is the driving force on the train from the helical current, 𝑀𝑇 is the mass of the train, 

𝑔 is the acceleration of free fall, 𝜇𝑘 is the coefficient of kinetic friction of the system, and 𝑀𝑊 is 

the mass of the hanging weight. 

𝐹𝑥𝑡𝑜𝑡𝑎𝑙
 can be calculated using the gradient of the potential energy of the magnets in the 

magnetic field. The potential energy of a magnetic dipole with magnetic moment 𝛄 in a magnetic 

field 𝐁 can be found with 

𝑈(𝛄, 𝐩) = −𝛄 ∙ 𝐁(𝐩) (5.2) 

(Griffiths, 2018, p. 291). The force on this dipole can be expressed as 

𝐅(𝛄, 𝐩) = −∇𝐔(𝛄, 𝐩) (5.3) 

(Tegmark, 2014) where ∇=

[
 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧]
 
 
 
 

 is a vector of derivative operators. Substituting equation 5.2 into 

equation 5.3, this becomes 
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𝐅(𝛄, 𝐩) = ∇(𝛄 ∙ 𝐁(𝐩)). (5.4) 

Since we only have a definition for 𝐵𝑥, we can only find 𝐹𝑥, and ∇ can be reduced to 
𝜕

𝜕𝑥
. The net 

force on the train will be a combination of the forces experienced by dipoles 𝑑1 and 𝑑2, which can 

be found using values of 𝑚𝑑1
= 𝑚 and 𝑝𝑑1𝑥

= 0 and 𝑚𝑑2
= −𝑚 and 𝑝𝑑2𝑥

= 𝐿  respectively, as 

expressed by 

𝐹𝑥𝑡𝑜𝑡𝑎𝑙
= 𝐹𝑥(𝑚, 0) + 𝐹(−𝑚, 𝐿). (5.5) 

Since the dipoles have magnetic moments with 𝑦- and 𝑧-values of 0, we can redefine equation 5.4 

as 

𝐹𝑥(𝛾, 𝑥) =
𝜕

𝜕𝑥
(𝛾 ∙ 𝐵𝑥(𝑥)). 

Substituting in the definition of 𝐵𝑥(𝑥) provided by equation 4.10, 

𝐹𝑥(𝛾, 𝑥) =
𝜕

𝜕𝑥
(𝛾 ∙ 𝑘

𝜇0𝐼

4𝜋
∙ (

𝐿 − 𝑥

√𝑅2 + (𝐿 − 𝑥)2
+

𝑥

√𝑅2 + 𝑥2
)) 

= 𝛾 ∙ 𝑘
𝜇0𝐼

4𝜋
∙

𝜕

𝜕𝑥
(

𝐿 − 𝑥

√𝑅2 + (𝐿 − 𝑥)2
+

𝑥

√𝑅2 + 𝑥2
) . (5.6) 

 Using the sum rule, 

𝜕

𝜕𝑥
(

𝐿 − 𝑥

√𝑅2 + (𝐿 − 𝑥)2
+

𝑥

√𝑅2 + 𝑥2
) =

𝜕

𝜕𝑥
(

𝐿 − 𝑥

√𝑅2 + (𝐿 − 𝑥)2
) +

𝜕

𝜕𝑥
(

𝑥

√𝑅2 + 𝑥2
). 

Beginning with the first term, using the quotient rule, 
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𝜕

𝜕𝑥
(

𝐿 − 𝑥

√𝑅2 + (𝐿 − 𝑥)2
) =

(𝐿 − 𝑥)2

√𝑅2 + (𝐿 − 𝑥)2
− √𝑅2 + (𝐿 − 𝑥)2

𝑅2 + (𝐿 − 𝑥)2
 

= −
𝑅2

(𝑅2 + (𝐿 − 𝑥)2)
3
2

. (5.7) 

Doing the same with the second term, 

𝜕

𝜕𝑥
(

𝑥

√𝑅2 + 𝑥2
) =

√𝑅2 + 𝑥2 −
𝑥2

√𝑅2 + 𝑥2

𝑅2 + 𝑥2
 

=
𝑅2

(𝑅2 + 𝑥2)
3
2

. (5.8) 

Substituting equations 5.7 and 5.8 into equation 5.6 and expanding 𝑘 with its definition from 

equation 3.3, 

𝐹𝑥(𝛾, 𝑥) = 𝑅2 ∙ 𝛾 ∙
𝜇0𝐼𝑁

𝐿
∙ (

1

(𝑅2 + 𝑥2)
3
2

−
1

(𝑅2 + (𝐿 − 𝑥)2)
3
2

) . (5.9) 

Using equation 5.9 in equation 5.5, 

𝐹𝑥𝑡𝑜𝑡𝑎𝑙
= 𝑅2 ∙ 𝑚 ∙

𝜇0𝐼𝑁

𝐿
∙ ((

1

(𝑅2)
3
2

−
1

(𝑅2 + 𝐿2)
3
2

) − (
1

(𝑅2 + 𝐿2)
3
2

−
1

(𝑅2)
3
2

))  

= 𝑅2 ∙ 𝑚 ∙
𝜇0𝐼𝑁

𝐿
∙ (

1

𝑅3
−

1

(𝑅2 + 𝐿2)
3
2

−
1

(𝑅2 + (𝐿)2)
3
2

+
1

𝑅3
) 
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= 2𝑚 ∙
𝜇0𝐼𝑁

𝐿
∙ (

1

𝑅
−

𝑅2

(𝑅2 + 𝐿2)
3
2

) (5.10) 

Substituting equation 5.10 into equation 5.1 and rearranging for 𝐼, 

2𝑚 ∙
𝜇0𝐼𝑁

𝐿
∙ (

1

𝑅
−

𝑅2

(𝑅2 + 𝐿2)
3
2

) − 𝑀𝑇𝑔𝜇𝑘 − 𝑀𝑊𝑔 = 0 

2𝑚 ∙
𝜇0𝐼𝑁

𝐿
∙ (

1

𝑅
−

𝑅2

(𝑅2 + 𝐿2)
3
2

) = 𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔 

𝐼 ∙ (
(𝑅2 + 𝐿2)

3
2 − 𝑅3

𝑅(𝑅2 + 𝐿2)
3
2

) =
𝐿

𝜇0𝑚𝑁
(𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔) 

𝐼 = (
𝑅(𝑅2 + 𝐿2)

3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

)(
𝐿

𝜇0𝑚𝑁
(𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔)). 

Substituting in the definition of 𝐼 provided in equation 4.2, 

𝐼𝐵 + 𝐼𝐸 = (
𝑅(𝑅2 + 𝐿2)

3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

)(
𝐿

𝜇0𝑚𝑁
(𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔)). 

Substituting in equation 3.1 and rearranging for 𝜀, this becomes 

𝐼𝐵 +
𝜀

𝑅𝑇
= (

𝑅(𝑅2 + 𝐿2)
3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

)(
𝐿

𝜇0𝑚𝑁
(𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔)) 
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𝜀 = 𝑅𝑇 ((
𝑅(𝑅2 + 𝐿2)

3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

)(
𝐿

𝜇0𝑚𝑁
(𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔)) − 𝐼𝐵). 

Substituting in equation 3.45 and rearranging for 𝑣, 

−𝑣 ∙
𝜇0𝑚𝑁

𝐿
(

𝑅2

(𝐿2 + 𝑅2)
3
2

−
1

𝑅
) = 𝑅𝑇 ((

𝑅(𝑅2 + 𝐿2)
3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

)(
𝐿

𝜇0𝑚𝑁
(𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔)) − 𝐼𝐵) 

𝑣 = −𝑅𝑇 (
𝐿

𝜇0𝑚𝑁
)(

𝑅(𝑅2 + 𝐿2)
3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

)[(
𝐿

𝜇0𝑚𝑁
)(

𝑅(𝑅2 + 𝐿2)
3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

) (𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔) − 𝐼𝐵] 

𝑣 = −(
𝐿

𝜇0𝑚𝑁
)(

𝑅(𝑅2 + 𝐿2)
3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

)[𝑅𝑇 (
𝐿

𝜇0𝑚𝑁
)(

𝑅(𝑅2 + 𝐿2)
3
2

(𝑅2 + 𝐿2)
3
2 − 𝑅3

)(𝑀𝑇𝑔𝜇𝑘 + 𝑀𝑊𝑔) − 𝑉] 

where 𝑉 is the voltage across the battery. 

Experiment Procedure and Collected Data 

𝑉, 𝑅𝑇, and 𝜇𝑘 must be determined experimentally. The voltage can be directly measured with 

a multimeter by touching the probes to either end of the battery while the train is held in contact 

with inside of the coil without moving. The total resistance can be found with knowledge of the 

current flowing through the coil when the train is held still. To create an opening in the circuit, a 

magnet can be brought out of contact with the battery by placing an insulating washer between the 

conductive washer and the magnet and attaching the multimeter probes to the conductive washer 

and adjacent magnet so as to close the circuit. The washers extend the distance 𝐿 separating the 

magnets by a negligible amount. Ohm’s law can then be used to find the resistance of the circuit. 
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The coefficient of kinetic friction can be calculated by using a depleted battery, performing the 

same procedure with the conductive and insulating washers to open the circuit and reduce the 

presence of eddy currents, and dragging the train through the coil with a hanging weight and 

measuring its acceleration. The acceleration of the train is measured by configuring the system 

such that the movement of the string attaching the washer to the hanging weight spins a pulley on 

the side of the table, the acceleration of which is measured by an attached photogate, as illustrated 

in Diagram 3. 

As Diagram 3 illustrates, the hanging weight exerts a force 

𝐹 = 𝑀𝑊𝑔 (6.1) 

on the train which is opposed by a frictional force 

𝑓 = 𝑀𝑇𝑔 ∙ 𝜇𝑘 . (6.2) 

The acceleration of the system can be found with 

𝑎 =
𝐹 − 𝑓

𝑀𝑇 + 𝑀𝑊

(6.3) 

Diagram 3: Configuration of μk experiment 
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Substituting equations 6.1 and 6.2 into equation 6.3 and rearranging for 𝜇𝑘, 

𝑎 =
𝑀𝑊𝑔 − 𝑀𝑇𝑔 ∙ 𝜇𝑘

𝑀𝑇 + 𝑀𝑊
 

𝑎(𝑀𝑇 + 𝑀𝑊) = 𝑀𝑊𝑔 − 𝑀𝑇𝑔 ∙ 𝜇𝑘 

𝑎(𝑀𝑇 + 𝑀𝑊) − 𝑀𝑊𝑔 = −𝑀𝑇𝑔 ∙ 𝜇𝑘 

𝜇𝑘 =
𝑀𝑊𝑔 − 𝑎(𝑀𝑇 + 𝑀𝑊)

𝑀𝑇𝑔
. (6.4) 

Using values of 𝑀𝑇 = 0.0820 kg and 𝑀𝑊 = 0.05 kg, I took ten measurements of the average 

acceleration of the system and calculated the corresponding coefficient of kinetic friction using 

equation 6.4. The results are shown in Table 1. 

 

𝑎 (m/s/s) 𝜇𝑘 

1.64 0.338 

1.64 0.338 

1.55 0.352 

1.65 0.352 

1.55 0.339 

1.63 0.352 

1.55 0.352 

1.55 0.362 

1.49 0.362 

1.49 0.348 

The average of these values is 𝜇𝑘 = 0.348, which is the value used in all relevant calculations. 

To verify that this model is an accurate description of the phenomenon, I measured the 

maximum velocity of the train in its transit ten times. The method with which the velocity of the 

Table 1: Results of μk experiment with a and corresponding μk 
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train was measured is identical to that described above, although the 0.05 kg weight was replaced 

with a 0.003 kg weight and the additional washers were removed to allow contact between both 

magnets and the battery. I will use values of 𝑚 = 5.7 A m2, 𝑅 = 0.012 m; 𝑘 =
2𝜋

𝑠
=

2𝜋𝑁

𝐿
 where 

𝑁 = 35.0 turns and 𝐿 = 0.089 m; 𝑀 = 0.0820 kg; 𝑔 = 9.81
m

s2; 𝜇𝑘 = 0.348; and 𝑀𝑊 =

0.003 kg in the calculations. 

Unfortunately, the percent error of the predicted 𝑣 is extremely variable and often very high, 

as demonstrated in Table 2. 

 

𝑉 (V) 𝐼 (A) Calculated 𝑅𝑇 (Ω) Predicted 𝑣 (m/s) Observed 𝑣 (m/s) Percent error 

0.2725 3.564 0.0765 0.730 0.54 35.1 

0.2777 2.812 0.0988 0.625 0.51 22.6 

0.2276 2.392 0.0952 0.432 0.54 20.1 

0.2511 2.673 0.0939 0.539 0.44 22.5 

0.2394 2.653 0.0902 0.510 0.42 21.4 

0.2234 2.696 0.0829 0.483 0.47 2.9 

0.2630 2.274 0.116 0.466 0.52 10.3 

0.2452 2.139 0.115 0.396 0.48 17.5 

0.2568 2.056 0.125 0.387 0.5 22.5 

0.1995 1.896 0.105 0.254 0.2 27.2 

There was an abundance of noise in the data due to poor contact between the multimeter 

and the train and the unideal quality of construction of the coil. 

Conclusion and Evaluation 

The motion of the train has been modelled in a general form which is applicable to most 

configurations of the experiment. An equation was derived with which the terminal velocity of the 

train can be calculated with sufficient knowledge of the physical characteristics of the system. The 

experimental portion of this essay has provided weak support for the validity of the developed 

Table 2: Results of v experiment 
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model, with a troubling inconsistency between the predicted and observed terminal velocities of 

the train. 

There are many sources of error in this experiment which may have produced this 

inconsistency. Firstly, the collection of the voltage difference between the terminals of the battery 

and the current flowing through the system was very unstable, and the readings on the multimeter 

varied wildly, leading to considerable uncertainty in the data collected. Compounding these 

inaccuracies, the dimensions of the coil and the number of turns of the coil between the two 

magnets is variable throughout the coil. Although I constructed the coil to the best of my ability, 

variability in the form of the coil is unavoidable when coiled by hand, which is likely the main 

source of the noise in the observed velocity of the train. In addition, the train bounces along the 

coil during transit rather than maintaining constant contact with it, the effect of which was not 

considered in the model. Due to the number of variables which influence the terminal velocity of 

the train, there were many opportunities for errors in measurement to accumulate and alter the 

produced value. 

There are also many modifications to the model which can be made to improve its validity. 

It was assumed that the train is perfectly centered in the track at all times; however, the train sits 

below the axis of the coil and is not perfectly still in any direction, which was not considered in 

the development of this model. The ferromagnetic properties of the battery likely have an effect 

on the strength of the magnetic field generated by both the helical current and either magnet much 

like an iron-core solenoid, but the procedure for measuring the relative magnetic permeability of 

a mixed substance like that found in a battery was too complex to be explored in this 

paper. Similarly, the washer attached to the trailing magnet is ferromagnetic and thus augments 
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the magnetic field of the magnet it is attached to; unfortunately, the calculations for determining 

the magnetic field resulting from this interaction are outside the scope of this paper. In addition, 

neither the 𝑦-component nor the 𝑧-component of the motion of the train were considered in the 

calculation of the train’s terminal velocity; the vertical force may have increased or decreased the 

amount of friction experienced by the train, and the lateral movement of the train through the coil 

may have generated additional friction which the model developed in this paper fails to take into 

account.  



37 
 

References 

AmazingScience. (2014, August 24). World's Simplest Electric Train. YouTube. Retrieved 

October 11, 2020, from youtube.com/watch?v=J9b0J29OzAU 

Criado, C., & Alamo, N. (2016, January). World's simplest electric train. American Journal of 

Physics, 84(1), 21-25. doi:10.1119/1.4933295 

Fitzpatrick, R. (2006, February 2). The Biot-Savart law. Retrieved September 30, 2020, from 

Unviersity of Texas at Austin: farside.ph.utexas.edu/teaching/em/lectures/node39.html 

Fitzpatrick, R. (2007, July 14). Emf and Internal Resistance. Retrieved September 30, 2020, 

from The University of Texas at Austin: 

farside.ph.utexas.edu/teaching/302l/lectures/node57.html 

Griffiths, D. J. (2018). Introduction to Electrodynamics (4th ed.). Cambridge, United Kingdom: 

Cambridge University Press. 

K&J Magnetics, Inc. (2020, August 24). SC Specification Sheet. Retrieved August 24, 2020, 

from K&J Magnetics: kjmagnetics.com/specprep.asp?pName=SC 

Ling, S. J., Sanny, J., & Moebs, B. (2020, August 13). 13.6: Eddy Currents. Retrieved 

September 14, 2020, from Physics LibreTexts: 

phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_(Op

enStax)/Map%3A_University_Physics_II_-

_Thermodynamics_Electricity_and_Magnetism_(OpenStax)/13%3A_Electromagnetic_In

duction/13.06%3A_Eddy_Currents 



38 
 

Purcell, E. M., & Morin, D. J. (2013). Electricity and Magnetism. Cambridge: Cambridge 

University Press. 

Tatum, J. (2020, August 11). 17.2: The SI Definition of Magnetic Moment. Retrieved October 11, 

2020, from Physics LibreTexts: 

phys.libretexts.org/Bookshelves/Electricity_and_Magnetism/Book%3A_Electricity_and_

Magnetism_(Tatum)/17%3A_Magnetic_Dipole_Moment/17.02%3A_The_SI_Definition

_of_Magnetic_Moment 

Tegmark, M. (2014). Presentation_W07D2.pdf. Retrieved September 30, 2020, from MIT - 

Massachusetts Institute of Technology: 

web.mit.edu/8.02t/www/mitxmaterials/Presentations/Presentation_W07D2.pdf 

Urone, P. P., & Hinrichs, R. (2020, September 9). 23.4: Induced Emf and Magnetic Flux. 

Retrieved October 11, 2020, from Physics LibreTexts: 

phys.libretexts.org/Bookshelves/College_Physics/Book%3A_College_Physics_(OpenSta

x)/23%3A_Electromagnetic_Induction_AC_Circuits_and_Electrical_Technologies/23.04

%3A_Induced_Emf_and_Magnetic_Flux 

 


