
 

 

 

 

 

 

 

 

 

 

 

Methods of Maximization of Rewards with Predetermined Random Lists of Rewards 

Given a hidden list of "n" items what methods of maximization of reward selections exist given 

that once an item is examined, it must either be selected or rejected immediately? 
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Introduction 

The Sultan dowry problem is a quite simple problem, but its solution is rather 

complicated. The problem states: “A sultan has granted a commoner a chance to marry one of his 

n daughters. The commoner will be presented with the daughters one at a time and, when each 

daughter is presented, the commoner will be told the daughter's dowry” (Weisstein). The 

problem by itself can be answered quite simply, but its existence can provide insight into more 

generalized questions like given a hidden list of "n" items what methods of maximization of 

reward selections exist given that once an item is examined, it must either be selected or rejected 

immediately That can provide insight into how we make decisions. Upon being presented with a 

daughter, the commoner must immediately decide whether to accept or reject her. However, the 

sultan will allow the marriage to take place only if the commoner picks the daughter with the 

overall highest dowry. Then what is the commoner's best strategy, assuming he knows nothing 

about the distribution of dowries.” (Weisstein). The most important part of this problem as stated 

is that the commoner does not know anything about the distributions of the dowries. Although 

this makes the problem slightly less realistic, as it is obvious there would be some sort of 

maximum on the value that the dowry could be, for the problem we will assume that the 

commoner has zero way of knowing what the possible range of dowries could be.  

The Sultan’s Dowry Problem 

The best possible strategy that the commoner can use to maximize his probability of 

choosing the highest dowry involves waiting for x daughters and then afterwards choosing the 

next daughter with a dowry higher than one seen before (Weisstein). Throughout the paper, we 
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will use many different variables for many different uses, although we will use many common 

variables. Some of these common variables will be as follows: 

We will let X represent the number of daughters that will be passed before the commoner 

will pick the next highest daughter. 

We will let N represent the total number of daughters that will be presented to the 

commoner. 

We will let P represent the probability that the commoner will select the daughter with 

the highest dowry. 

In this situation, the commoner will know nothing about the distribution of dowries, and 

as a result the only strategy he may take is one that compares dowries to the ones he has already 

seen. Furthermore, it is never implied in the question that the distribution will follow some sort 

of pattern, so while if we were dealing with a normal distribution there may be some ways we 

can use that knowledge to increase our odds, instead we must simply compare numbers to each 

other using operators like greater than or less than. As stated above, the commoner should have 

some value of X that after which he will select the next daughter with a dowry higher than any 

he had seen before. This value of X can be found by finding the lowest value of X such that the 

probability of the highest dowry has already been seen is just greater than the probability that the 

highest dowry has not been seen and it will be picked. 

The value of this inequality, the probability that the highest dowry has already been seen, 

is rather simple to calculate. It can be found by dividing the number of dowries that have already 

been seen by the total number of daughters, or (X/N) 
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The second value of this inequality—The probability that the highest dowry has not been 

seen and it will be picked is much more difficult to calculate but is simpler when it is examined 

in chunks. 

To start, we will calculate the probability that the 2nd highest daughter is the highest 

daughter that is seen in the initial set. This value can be found by finding the probability that the 

2nd highest daughter is in the set of daughters first seen, and multiply it by the probability that 

given the 2nd highest daughter is in the set, no daughters higher than the 2nd is also present. This 

gives us 

(
𝑋
𝑁) (𝑁 − 𝑋)! (𝑁 − 1)𝑥−1

(𝑁 − 1)!
 

Finally, we must divide this value by 1, the probability that the highest daughter will be 

the first one high enough in the list after the turning point to be selected.  

We will continue this with examining the situation where the 3rd highest daughter in the 

list is the highest that will be selected. This leaves us with the following probability. 

(
𝑋
𝑁) (𝑁 − 𝑋)! (𝑁 − 2)𝑥−1(𝑁 − 2)!

2
 

There many of these terms can be factored out of this equation, and luckily the rest of the 

equation simplifies very well. In the end, after iterating through all the potential highest daughter 

numbers, we are left with the following equation 

(
𝑋

𝑁
) ∗ ((

1

𝑋 + 1
) + (

1

𝑥 + 1
) + ⋯ + (

1

𝑁
)) 

Finally, looking at the entire equation, we must find the smallest possible value such that  
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(
𝑋

𝑁
) ≥ (

𝑋

𝑁
) ∗ ((

1

𝑋 + 1
) + (

1

𝑥 + 1
) + ⋯ + (

1

𝑁
)) 

Or, to further simplify it,  

1 ≥ ((
1

𝑋 + 1
) + (

1

𝑥 + 1
) + ⋯ + (

1

𝑁
)) 

This can be solved easily by a calculator or a computer, and so we will generate a list of 

some of the possible values of N and their corresponding values of X, and analyze this for any 

trends that may become apparent 
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N X X/N 

   

5 2 0.4 

7 3 0.429 

10 4 0.4 

15 6 0.4 

20 8 0.4 

40 15 0.375 

80 30 0.375 

100 37 0.37 

200 74 0.37 

500 184 0.368 

1000 368 0.368 

 

This chart shows a few interesting insights. First, it shows that the correlation between 

the total number of daughters and the number of daughters the commoner should observe before 

being ready to make the decision to pick the next highest dowry he sees is a linear relationship, 

and a directly proportional one as well. This means that we can represent this relationship as a 

percentage. The commoner should wait until he has seen about 36.8%, or exactly 1/e of the 

daughters, rounded to the nearest daughter, until he should then pick the next highest dowry he 

sees. 

This also gives us further insight into how probable it is that the commoner is able to 

select the daughter with the highest dowry. Because the ratio of daughters seen before the 
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commoner has the optimal amount of information to make the decision is 1/e, we can now plug 

this value in for the minimum possible value for the first part of the inequality used to determine 

when the commoner should make the decision. The inequality used is the following: 

(
𝑋

𝑁
) ≥ (

𝑋

𝑁
) ∗ ((

1

𝑋 + 1
) + (

1

𝑥 + 1
) + ⋯ + (

1

𝑁
)) 

Specifically, we are interested in the expression on the left half of this inequality. This 

expression can be simplified significantly. The (X / N) expression can be simplified to 1/e, as we 

just established that 1/e will be approximately the ratio of daughters needed to be seen. 

Furthermore, another inequality already used is useful to understanding this. The 

following is a simplified version of the inequality above.  

1 ≥ ((
1

𝑋 + 1
) + (

1

𝑥 + 1
) + ⋯ + (

1

𝑁
)) 

The term on the right is the same as the remaining term we wish to simplify. The final 

simplified expression, displayed as an inequality, provides insights into the commoner’s 

situation. 

𝑃 ≥ (
1

𝑒
) 

Shockingly, the commoner has a large probability of selecting the highest daughter—at 

1/e or about 36.8% at the minimum, regardless of how many total daughters he will be presented 

with.  
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Variation One—Known Distribution 

The sultan’s dowry problem is an interesting mathematical problem, however the lack of 

information supplied to the commoner hinders its ability to apply to real life as well. To continue 

our examination of this topic, we will analyze variations to the problem that may have more real 

world applications. Because we will no longer be discussing the actual sultan's dowry problem 

itself, but rather some variations of the problem, it will be helpful to view the problem 

differently, although fundamentally the same. Throughout the two variations to the problem that 

we will discuss, we will examine the problem as a game where a guesser attempts to pick a card 

out of a stack with a predetermined number of cards in it, each with a number written on it. 

For the first of the variations to the sultan's dowry problem, we will change the amount of 

information available to the guesser about the distribution of the numbers. Instead of the guesser 

knowing nothing about the distribution of the numbers, he will instead have full knowledge of 

the possible values that the cards could contain, and the probability of each of those numbers. 

We will also assume that the numbers are infinitely precise, so that two numbers could never be 

the exact same. While it matters that the guesser has complete knowledge of how distribution 

that the cards belong to, as for our analysis all that is important is the ranks of the cards, so we 

can use the percentile of the number on the card. It does not matter if the distribution is normal, 

skewed, uniform, or some other irregular shape, as for the purpose of this variation all 

distributions can be condensed to a uniform distribution between 0 and 1 representing the 

percentile of the number on the card.  

As a result of us knowing the distribution of the outcomes at the start, it is no longer 

necessary to wait for a period of time to gather information about the distribution. Instead, the 
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optimal strategy will be to wait until we see an outcome with a high enough percentile, and then 

select it. The probability that the highest outcome is selected can be found by multiplying the 

probability that various numbers of the set could get picked, multiplied by, for each, the 

probability that the highest of them would get picked. Once again, we will assume that two items 

in this list cannot have the same exact number associated with it. 

To find what the appropriate percentile would be to select the value, we will use a similar 

principle to before. Like last time, we will evaluate the probability that, for any given percentile 

of value given, the odds of the value being the highest in the set, and the probability that in the 

rest of the set, there will be a higher value. Because these events are mutually exclusive and 

collectively exhaustive, we only need to solve for what value makes these odds 50% or greater. 

We will solve for the following: 

0.5 ≥ 𝑋𝑛 

Where X is the percentile of the item selected, and n is the number of remaining options 

to pick. Interestingly, this also simplifies incredibly well, to give us the result that  

𝑋 = (1 − (
1

𝑛
)) 

The following chart shows what the threshold looks like for many possible values of n, 

and what the probability of obtaining the highest value is. 
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N Threshold P 

2 0.5 0.625 

3 0.667 0.568 

5 0.8 0.531 

10 0.9 0.507 

20 0.95 0.494 

50 0.98 0.490 

100 0.99 0.487 

200 0.995 0.485 

500 0.998 0.483 

 

This chart and graphs show some interesting trends also. First of all, they show that, as 

expected based off of the earlier calculation, the value of a number has to be greater than its 

percentile for it to be selected.  

This method is improvable, however, when understanding that an initial group of 10 

possible values where the guesser has already seen the first of the possible values is almost no 

different than a group of 9 possible values where the guesser has not seen any of the possible 

values. The only difference here is that for the group of 10 initial values, one of them is already 

known. Therefore, we can change this into a 2-step process to determine whether the guesser 

should pick the number presented to them. 

The guesser should select the value if 

1. The number presented is greater than all of the numbers already seen. 
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And  

2. The number presented is greater than (1 - (1 / k)) where k is the total number of values 

left to seen 

The difference this change makes is small, but the change is significant. This change can 

be seen in the chart below 

N P 

2 0.625 

3 0.590 

5 0.586 

10 0.583 

20 0.579 

50 0.575 

100 0.573 

200 0.571 

500 0.569 

As the charts show, the second method of selecting the highest value is much better than 

the first, with the probability of an N value of 500 is about 8% more than the probability using 

the second method. It is also extremely better than the situation in the sultan’s dowry problem, 

where given the information about the possible distribution of the values/dowries.  

Variation Two—Maximizing Averages 

One final aspect of this situation is to discuss how to maximize the average outcome. 

This has many real worlds uses, including obtaining, on average, the best deals when shopping. 
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Unlike the last situation, however, this situation relies on the distribution being one specific way 

so we will only analyze the normal distribution. Like in the other problems, however, all normal 

distributions have essentially the same features, so we will specifically be analyzing a uniform 

distribution between 0 and 1. This allows us to use many of the same methods as in the part 

where we analyzed the probability of picking the greatest value given a known distribution. 

This situation is distinct from the other variations in one major way. It does not matter 

what has already been seen, but all that matters is the current value of the item and how many 

items left. 

For any situation, the decision to either pass an item or keep it can be determined by 

comparing the expected value of keeping the current item to the expected value of playing out 

the rest of the game. Calculating the expected value is easy for the current item—just whatever 

the number is—but calculating the expected value for the whole game proves to be a more 

difficult part. Calculating this for a game with one is easy—as it is simply taking the average of 

all of the possible values for that one value, giving us an expected value of 0.5. 

For a game with 2 cards, the player will either take the first card if its expected value is 

greater than 0.5 or take the second card otherwise. The first card will be selected 50% of the time 

with an average expected value of 0.75 when it is selected, or the second card will be selected—

again with a probability of 50%--and will have an expected value of 0.5. Combined, this gives us 

an expected value of 0.625 for a game with 2 cards 

Finally, the last game we will examine will be a game with three cards. In this situation, 

the player can either decide to take the first card presented to them, with a known value, or 

instead play the game with 2 cards, with a known expected value of 0.625. In a similar way as in 
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the last two times, we can determine that the expected value of the game with three cards will be 

0.6953125. 

Based on these first three games, a recursive formula becomes apparent. To find the 

expected value for a game with N cards played by a perfect player, all one needs to know is the 

expected value of a game with N-1 cards in it. The formula to calculate this is as follows, where 

N represents the total number of cards in the game and E represents the expected value of a 

game. 

𝐸(𝑁) =
(1 + 𝐸(𝑁 − 1))(1 − 𝐸(𝑁 − 1))

2
+ 𝐸(𝑁 − 1)2 

Or, in a more simplified form,  

𝐸(𝑁) = 0.5(1 + 𝐸(𝑁 − 1)2) 

The values for these games can be seen in the following chart. 
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N Expected Value 

1 0.5 

2 0.625 

3 0.6953125 

5 0.7750815 

10 0.8610982 

20 0.9198874 

50 0.9641452 

100 0.9812084 

1000 0.9980172 

10000 0.9998002 

 

There appears to be at least somewhat of an inverse relationship between the total number 

of cards in a game and the expected value of playing the game. While other relationships appear 

to exist at smaller values, these relationships seem to fall apart at larger values of N because, 

according to the chart, the end behavior of this relationship is to approach 1 as N approaches 

infinity, which does not share in end behavior with the many patterns suggested by the early 

data. 

A similar method could be applied to other types of distributions as well. By comparing 

the value of the current card to the expected value of playing out the rest of the game, one can 

determine whether the decision to keep the current card or continue with the game would lead to 

a higher expected value. 
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Conclusion 

This essay explores the sultan’s dowry problem, a problem where a commoner is 

presented with “N” daughters one at a time, each with an associated dowry, and upon being 

presented with a daughter, must immediately decide whether to marry that daughter or not, 

knowing that he will only be allowed to marry if he has selected the daughter with the highest 

dowry. The essay further discussed the details of some variations to this problem, one where the 

commoner has the information about the possible distribution of such dowries, and another 

where the commoner aims to maximize the average dowry received without the restriction that 

he may only marry if he selects the daughter with the highest dowry. For further research, it 

would be interesting to extend the analysis on variation two to include more types of 

distributions and analyze the differences between them. Further, it would be interesting to 

modify the original problem to allow the commoner to marry any of the top, for example, three 

daughters, and observe if any new patterns become apparent. 
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